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Mapping Income Poverty in Belize 
Using Satellite Features and Machine Learning

The last poverty assessment of Belize was undertaken in 2009, 
which hinders the country’s capacity to make an accurate 
diagnosis of the social situation. Measuring poverty not only 
allows governments to design better social programs, target 
their beneficiaries and monitor their progress - it also allows a 
country to assess how close it is to eradicating poverty. 

For decades, poverty has been measured using costly 
on-the-ground surveys that can only hope to sample a fraction 
of the poor. In part because of the high cost, the poorest coun-
tries often have the weakest poverty statistics. Despite interna-
tional e�orts, most governments measure poverty too infre-
quently to adequately inform policy, using samples that are 
representative of larger geographic areas than is necessary to 
combat increasingly isolated pockets of poverty. 

With the advent of big data, such as satellite-based remotely 
sensed data, we are now able to measure correlates of poverty 
that span the entire universe of the world’s poor. Until recently, 
however, these methods were too expensive; for countries that 
did not have the budget to produce traditional surveys, such 
costs were una�ordable. Fortunately, the widespread availability 
of free imagery with global coverage and frequent revisit rates 
now provide an important opportunity to produce poverty map-
ping at a lower cost. 

Prologue

Belize is an exemplary country where big data and machine 
learning hold promise for generating poverty maps at a reduced 
cost. More than ten years have passed since Belize produced its 
last poverty assessment, and the sample sizes of the surveys that 
the country produces are too small to generate poverty statis-
tics. Moreover, agriculture is a major source of income for Beliz-
ean households, especially the poorest, and satellite imagery is 
particularly adept at capturing intangibles in rural areas that are 
di�cult to measure in surveys.

For all the reasons cited above, the Inter-American Development 
Bank (IDB) initiated this project with the assistance of research-
ers at Chapman and George Washington Universities over a year 
ago. Today, this monograph makes available for the first time a 
poverty map at the enumeration district level, leveraging the 
latest techniques in big data and the use of satellite imagery. It is 
important to note that the project included a one-week training 
session for the Statistical Institute of Belize (SIB) in an e�ort to 
provide the necessary skills for SIB sta� to produce poverty 
statistics with greater frequency and at a lower cost. 

At the IDB, we trust that this monograph will be a tool to assist 
policymakers in Belize to make better-informed decisions as well 
as contribute to the research in this field, so that more countries 
could benefit from new technologies to fight poverty.

Cassandra Rogers
IDB Country Representative in Belize
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This study creates poverty maps for Belize leveraging free and 
open source methodologies that link satellite imagery and 
existing survey data with machine learning.   Belize is an exemplar 
of country for which Big Data and machine learning hold promise 
for generating poverty maps at a reduced cost as the last poverty 
assessment was conducted in 2009 and no consumption survey 
with the intention of producing sub-national estimates of poverty 
has been conducted since then. 

Even though poverty mapping provides clear information about 
the location and extent of poverty within a country, mapping 
the spatial distribution of poverty or incomes within a country 
remain a challenge for countries. Budget constraints restrict the 
use of poverty maps for policy targeting, leading to waste and 
ine�ciency.

Recently, several methods have been proposed that incorporate 
features from satellite imagery to either improve model perfor-
mance or supplant existing small area estimation methods. 
However, all the currently proposed methods require expensive 
high-spatial resolution imagery which, given their high cost and 
infrequent acquisition, may render these advances impractical 
for most applications.

This paper investigates how small area estimates of average 
income may improve when incorporating features derived from 
Sentinel-2 and MODIS imagery. Both satellites provide free imagery, 
have global coverage, and frequent revisit rate. It estimates a 
poverty map for Belize at the Enumeration District level which 
incorporates 423 contextual spatial features, and 203 time series 
features derived from these sensors, with and without 37 survey 
derived variables. The paper compares four machine learning 
methods, Ridge, Elastic Net, Random Forests, and Extreme 
Gradient Boosted Trees. The paper documents a nine percent 
improvement in model performance when including these 
satellite features into machine learning models estimating 
average incomes. Critically, these improvements are most signifi-
cant for the poorest households. In particular, models without 
satellite features are biased upward for the poorest households. 
This suggest that surveys alone do not contain su�cient infor-
mation to recover poverty rates and incomes for the poorest 
households. 

This paper finds that the poorest districts in Belize are Corozal, in 
the north, and Toledo, in the south, and suggests significant 
reduction in poverty for the districts of Orange Walk and Stann 
Creek in the last decade.
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Executive summary

Collecting routine poverty statistics is 
challenging and expensive. 

Current small area estimate methods 
overstate model performance or 
require expensive proprietary inputs.
 
Budget constraints restrict the use of 
poverty maps for policy targeting, 
leading to waste and ine�ciency. 

We leverage machine     learning and 
publicly available data to boost model 
performance. 

This captures critical information 
about urban and rural poverty from 
satellite imagery. 

Combined this creates a low cost and 
easily reproducible methodology that 
can be implemented anywhere. 

We explain over 91% of variability in 
enumeration district average income, 
and 55% out-of-sample. 

In particular we see significant 
improvements in accuracy for lowest 
quintile and rural households. 

Poverty mapping provides clear information about the location 
and extent of poverty within a country. These maps are general-
ly used for planning and resource allocation. In many countries, 
budget constraints and access to clear and open source meth-
odologies limit the routine creation of spatially explicit maps of 
poverty. Combining surveys with Big Data, such as information 
in cell phone call detail records or satellite imagery, may help 
reduce the costs of generating routine poverty maps. Further, 
Big Data might provide useful information on subpopulations of 
interest – the very poor, or individuals in rural areas, for example 
– that might otherwise be absent using traditional surveys.   

In this study, we create poverty maps for Belize leveraging free 
and open source methodologies that link satellite imagery and 
existing survey data with machine learning. We extract, from 
freely available satellite images, meaningful characteristics that 
are possibly correlated with local area income, including 
variables tracking the physical characteristics of a neighbor-
hood, and time series information on rainfall and vegetation 
patterns in the year prior to the survey. This method is a signifi-
cant jump forward in poverty mapping methodologies as it 
largely overcomes issues of cost and data availability. 

Belize is an exemplar of country for which Big Data and machine 
learning hold particular promise for generating poverty maps at 
a reduced cost. The last poverty assessment for Belize was 
conducted in 2009, during which the national poverty rate was 

assessed at 41.3%. During this assessment, sub-national 
estimates of poverty were provided only at the district-level. 
While labor force surveys in Belize are routinely conducted, no 
consumption survey with the intention of producing sub-nation-
al estimates of poverty has been conducted since then. For this 
application, we leverage a small, routine Labor Force Survey 
(LFS) and its linkages with a recent household census to infer 
household income.  

Raw satellite data does not capture information that is readily 
useful in poverty mapping. Therefore spatial and time series 
features are used to identify correlations between spatial and 
temporal patterns and poverty. Spatial patterns such as di�er-
ences in complexity urban areas can help identify informal 
settlements. Time series patterns can provide information critical 
to drivers of rural income such as the health of agricultural 
plants. These satellite data, when combined with the census, 
create a large number of independent variables for estimating 
spatial patterns of poverty. Satellite variables also prove crucial in 
accurately estimating poverty of rural households.  

In generating poverty maps for Belize we follow the Small Area 
Estimation method that combines information in a survey, which 
does not sample all areas for which we want to have poverty 
estimates, with a Census, which does sample all areas. We 
deviate from the standard linear models in Small Area Estimation 
and leverage the latest advances in machine learning to find 

Problem Approach Results 
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Executive summary 

linkages between satellite imagery, and census data to predict 
household income recorded in the smaller LFS survey. Here 
machine learning is particular useful in fitting models with large 
number of co-variates, as is the case of our models with satel-
lite-derived variables. We utilize a multi-model approach, taking 
advantage of the benefits of a variety of modeling approaches. 
Model accuracy is assessed on both the data used to estimate 
the model (i.e., the training data) and the data used to validate 
the model (i.e. the testing data). Assessing model accuracy on 
data not used to estimate the model (out-of-sample) is neces-
sary to ensure we have built a model that is broadly representa-
tive of the country as a whole.  

Results from this study indicate that the models explain 90% of 
the variation in enumeration district (ED) average income in the 
training data, and 55% of the variation in ED income in the 
testing data.  

Maps are produced showing relative poverty rates at the ED 
level, indicating that the poorest districts are Corozal, in the 
north, and Toledo, in the south. Viewing the last poverty map 
that was completed in 2009, four districts were classified as 
having high poverty rates – Corozal, Orange walk, Stann Creek 
and Toledo. Viewing our analysis in light of the previous map, it 
appears there has been significant reduction in poverty for the 
districts of Orange Walk and Stann Creek. Given the higher 
resolution of the new poverty map, we see substantial 
within-district heterogeneity. 
 
One important caveat with these maps is that while they provide 
an excellent view on the distribution of poverty within Belize, as 
currently designed they cannot provide an update to the nation-

al poverty rate. In order to do so, Belize would need to conduct a 
consumption survey that would provide the input to the machine 
learning models in substitution for the Labor Force Surveys used. 
However, using Big Data and machine learning paired with a 
consumption survey for this purpose will likely reduce the total 
costs of the consumption survey, given that Big Data has shown 
to reduce the number of households needed to survey for a 
given level of survey accuracy. 

A second important caveat is that, because we model household 
income, prediction variance should improve with the population 
of the underlying enumeration district. This is a basic feature of 
statistics, akin to the fact that a survey which samples more 
households will have a smaller margin of error in comparison to 
a survey that samples fewer households.  One important point to 
remember, however, is that the increased variance for enumera-
tion districts with smaller population will a�ect their income 
estimates both positively and negatively. Outside of systematic 
model bias, it will not be the case that ceteris paribus higher 
population districts will have higher estimated income.

Overall, these model results indicate that this open source 
method provides an in-expensive approach that performs as 
well or better than more complicated and costly methodologies. 
Importantly, this methodology can easily be applied over time as 
new survey data arrives, or can be expanded to new countries at 
low cost. 

Mapping Income Poverty in Belize 
Using Satellite Features and Machine Learning
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Introduction

Eradicating poverty is the first of the UN sustainable develop-
ment goals (SDGs). However, “data gaps” in the coverage of 
poverty statistic persist, despite international e�orts to increase 
their development. As many as 57 countries produced one or 
fewer data points on poverty in the decade between 2002 to 
2011 (Serajuddin et al., 2015). Unless better, cheaper methods 
are developed for identifying poverty it seems unlikely we will 
meet the goal of eradicating global poverty by 2030. 

Producing sub-national poverty estimates at regular frequen-
cies is burdened by the expense of conducting reliable 
consumption surveys. Kilic, Serajuddin, Uematsu, and Yoshida 
(2017), estimate an average direct survey cost in Latin America 
of $105 per household surveyed, and technical assistance costs 
on average are $613,000. Taken together, these costs amount to 
$2M per survey. Despite the innovations of rapid poverty 
assessment approaches such as Pape and Mistiaen (2018) and 
SWIFT (Yoshida et al., 2015), the expense of conducting reliable 
poverty surveys with su�cient frequency remains prohibitive in 
most countries.  
 
Given finite budgets and limited technical capacity to mount 
these surveys, several researchers have proposed using Big 

Data to assist in the generation of sub-national estimates of 
poverty, such as metadata from cellular phones (Blumenstock, 
Cadamuro, and On, 2015) or satellite imagery (Jean et al., 2016, 
Engstrom, Hersh, Newhouse, 2017). Most of these methods, 
however, rely on the use of expensive and proprietary cellular 
metadata, or high spatial resolution satellite imagery. For the 
hypothetical statistical agency that cannot commit $2M to 
mount a survey, the proposition of purchasing expensive Big 
Data such as high-resolution satellite imagery amounts to a sick 
patient considering two medicines, the expense of either of 
which is too dear to bear.  

This paper investigates the extent to which “open-source” Big 
Data can be meshed with existing survey data, to alleviate the 
lack of frequent sub-national poverty estimates. Using Belize as 
a test case, we utilize freely available, open-source satellite 
imagery to build sub-national estimates of income poverty, and 
determine the extent to which features from satellite imagery 
act as substitutes and complements to survey-based estimates 
of poverty. 

Mapping Income Poverty in Belize 
Using Satellite Features and Machine Learning
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1. Belize Context and Satellite 
Feature Motivation
Belize is an exemplar of a country for whom open-source Big 
Data methods may greatly reduce the cost of generating pover-
ty statistics. Firstly, the country last produced a poverty assess-
ment in 2009 (Belize National Human Development Advisory 
Committee, 2010). Since then, no sub-national poverty statistics 
have been produced to our knowledge. The expense of produ-
cing a specific poverty survey may be prohibitive.  Secondly, the 
Statistical Institute of Belize (SIB) conducts bi-annual Labor 
Force Surveys with sample sizes that are insu�cient for 
generating poverty statistics directly, but with the addition of 
variables derived from satellite imagery, they may be able to 
cheaply produce small area estimates of poverty. Thirdly, 
agriculture is a major source of income for much of the popula-
tion, in particularly poorer households. Satellite imagery is 
particularly adept at capturing intangibles in rural areas – such 
as periods of drought or excessive rain, whether fields are green 
or fallow – that are di�cult to impossible to measure in surveys. 
While well designed for its intended purpose of tracking 
employment patterns, survey questions in the Labor Force 
Survey are designed to capture labor income rather than the 
intransient incomes inherent with agricultural labor. Fourthly, 
the distribution of poverty in Belize is such that poverty is 
higher in rural areas than urban areas. Thus to su�ciently 
measure poverty in Belize we have to accurately measure rural 
poverty, something that is greatly improved with the addition of 
satellite features. 
 
Using two waves of surveys from the 2017 Labor Force Survey 
in Belize, we estimate machine learning models to predict 
household labor income as a function of survey & satellite 
variables. Features generated from satellite imagery are derived 
to capture both cross-sectional information as well as time-series
properties. This information may be able to capture, for exam-
ple, drought conditions in remote agricultural areas otherwise 
unobserved in surveys. We utilize four advanced machine learn-
ing models – Ridge regression, Elastic Net Regression, Random 
Forest, and Extreme Gradient Boosted Trees – to predict house-
hold income from satellite and survey characteristics. Despite 
the models' relative agreement as to the income of each area, 
we use a technique called model ensembling to reduce the 
prediction variance. In model ensembling, we take each model's 
prediction and average it across the models. This is done to 
weigh the strengths and weaknesses of any particular model, 
and has been shown to outperform using individual models 
alone. Additionally, we create an ensemble estimate of poverty 
rates using information from all four estimated models, which 
may be more robust to model uncertainty than a single poverty 
model.
  

We find that household-level income models, used to generate 
Enumeration District (ED) poverty rates, improve when incorpo-
rating satellite variables. Satellite and survey models explain 
55.3% of the variation in average incomes between predicted 
and true average ED income in the validation sample, compared 
to 50.7% of the variation using survey data alone, an improve-
ment of 9 percentage points. Satellite models alone explain 30% 
of the variation between predicted average ED income and true 
average ED income. Altogether these are not stunning argu-
ments for the use of open-source Big Data. However, we find 
that models improve precipitously for the poorest households. 
Average residuals for the lowest income decile households 
decline by nearly a third in magnitude. Given that much of the 
poverty in Belize occurs in rural areas, we believe satellite 
variables capture important features of income that are not 
observed by surveys.   

Poverty Map Motivation 
and Background
There are several motivations that justify the production of 
frequently updated poverty maps. One key function of a poverty 
map is to increase the targeting e�ciency of anti-poverty 
programs. These include not only direct transfer programs, but 
any fiscal policy that has the reduction of poverty as an outcome 
of interest. To the extent that e�orts can be directed towards 
poor areas, the e�ciency of these programs crucially depends 
on accurate information on the location of the poor. Regarding 
direct income transfers, the standard method of assigning trans-
fers involves a proxy means test, where individual household 
characteristics are used to assign poverty status in absence of a 
full consumption survey (Grosh and Baker, 1995). Firstly, poverty 
maps can help design the sample frame over which these proxy 
means tests are enacted, ensuring poor areas are adequately 
covered by income transfers (Bah et al., 2018). Secondly, the 
e�ciency of these transfers depends on whether they are timed 
according to aggregate shocks (Bazzi et al., 2015). Given the 
likely spatially heterogeneous income shocks accurtate, 
up-to-date poverty maps increases targeting e�ciency.  

Another motivation to produce frequently updated poverty 
maps is to ensure information about the location of the poor is 
transferred to higher levels of government. This is particularly 
crucial if fiscal policy has an anti-poverty aim as one of its goals, 
such as centralized transfers to support school construction in 
poor areas. Local representatives may be aware of which areas 

are poor, and can design anti-poverty e�orts e�ciently given 
their local resources. However, the information on sub-national 
poverty may not transfer to higher levels of government. Worse 
still, while qualitatively local representatives may know the rank 
ordering of poverty for areas under their representation, aggre-
gating rank order information from multiple representatives 
cannot ensure a national rank ordering is representative of true 
poverty rate. If maps are then frequently produced they may 
then be useful as an outcome to measure the relative e�ective-
ness of anti-poverty e�orts. This could improve the e�ciency of 
anti-poverty policy. While the costs of such policies are well 
known, learning the benefits of such programs requires accu-
rately measuring sub-national poverty rates, as aggregate statis-
tics may be confounded by numerous factor outside the scope 
of the anti-poverty policy.    

Poverty maps may also be used by democratic societies in 
holding their elected leaders responsible for a key welfare 
measure of interest: the fraction of their constituents that are in 
poverty. Poverty maps are easily understood by individuals with 
varying educational backgrounds. By informing constituents on 
the changing or static poverty rates of their local areas, voters 
are enabled to make informed decisions about which elected 
leaders to keep in or oust from o�ce. Elected leaders often 
make grand promises regarding various outcomes of interest, 
and yet poverty is a measure agreed on by most as an important 
metric to track. Defining this metric locally, and updating it 
frequently, aids in the political process to hold elected leaders 
responsible.  

Specifically for the Belize, the challenge is whether to implement 
a transfer based anti-poverty program or if fiscal policy should 

be designed with an anti-poverty goal, and if so, what type of 
policy should be enacted. Specifications on policy are beyond 
the scope of this document, however these estimates of sub-na-
tional poverty will be important inputs to a Hausman, Rodrik, 
and Velasco style growth diagnostics analysis. (2004).

Mapping Income Poverty in Belize 
Using Satellite Features and Machine Learning

Open-source and freely available satellite images may hold 
many potential benefits for resource constrained agencies. For 
one, statistical agencies can commit to the price of 0$ for 
open-source imagery in perpetuity. In comparison, a statistical 
agency that incorporates proprietary data into their statistical 
pipeline opens themselves to price gouging as proprietary data 
providers have pricing power due to “lock-in” e�ects (Arthur, 
1989). Data lock-in e�ects could occur if there are considerably 
costs moving from one data provider to another, for example 
because of costs of sta� adapting to new software or methods. 
Thus an initially low cost for proprietary data could balloon into 
larger costs if firms are profit maximizing and choose to exert 
pricing power.  

At the extreme end of firm profit maximizing behavior, it’s possi-
ble that even with competition among data providers, any 
surplus from using Big Data at statistical agencies may eventually 
be captured by proprietary data providers because of these lock 
in e�ects. Thus, it’s crucial to consider open-source alternatives 
to proprietary providers. This paper fills a necessary gap in the 
literature whereby we explore whether these open-source 
alternatives may be of use to the prototypical statistical agency.



Labor Force Survey and Census

Survey Data 

Belize is an exemplar of a country for whom open-source Big 
Data methods may greatly reduce the cost of generating pover-
ty statistics. Firstly, the country last produced a poverty assess-
ment in 2009 (Belize National Human Development Advisory 
Committee, 2010). Since then, no sub-national poverty statistics 
have been produced to our knowledge. The expense of produ-
cing a specific poverty survey may be prohibitive.  Secondly, the 
Statistical Institute of Belize (SIB) conducts bi-annual Labor 
Force Surveys with sample sizes that are insu�cient for 
generating poverty statistics directly, but with the addition of 
variables derived from satellite imagery, they may be able to 
cheaply produce small area estimates of poverty. Thirdly, 
agriculture is a major source of income for much of the popula-
tion, in particularly poorer households. Satellite imagery is 
particularly adept at capturing intangibles in rural areas – such 
as periods of drought or excessive rain, whether fields are green 
or fallow – that are di�cult to impossible to measure in surveys. 
While well designed for its intended purpose of tracking 
employment patterns, survey questions in the Labor Force 
Survey are designed to capture labor income rather than the 
intransient incomes inherent with agricultural labor. Fourthly, 
the distribution of poverty in Belize is such that poverty is 
higher in rural areas than urban areas. Thus to su�ciently 
measure poverty in Belize we have to accurately measure rural 
poverty, something that is greatly improved with the addition of 
satellite features. 
 
Using two waves of surveys from the 2017 Labor Force Survey 
in Belize, we estimate machine learning models to predict 
household labor income as a function of survey & satellite 
variables. Features generated from satellite imagery are derived 
to capture both cross-sectional information as well as time-series
properties. This information may be able to capture, for exam-
ple, drought conditions in remote agricultural areas otherwise 
unobserved in surveys. We utilize four advanced machine learn-
ing models – Ridge regression, Elastic Net Regression, Random 
Forest, and Extreme Gradient Boosted Trees – to predict house-
hold income from satellite and survey characteristics. Despite 
the models' relative agreement as to the income of each area, 
we use a technique called model ensembling to reduce the 
prediction variance. In model ensembling, we take each model's 
prediction and average it across the models. This is done to 
weigh the strengths and weaknesses of any particular model, 
and has been shown to outperform using individual models 
alone. Additionally, we create an ensemble estimate of poverty 
rates using information from all four estimated models, which 
may be more robust to model uncertainty than a single poverty 
model.
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We find that household-level income models, used to generate 
Enumeration District (ED) poverty rates, improve when incorpo-
rating satellite variables. Satellite and survey models explain 
55.3% of the variation in average incomes between predicted 
and true average ED income in the validation sample, compared 
to 50.7% of the variation using survey data alone, an improve-
ment of 9 percentage points. Satellite models alone explain 30% 
of the variation between predicted average ED income and true 
average ED income. Altogether these are not stunning argu-
ments for the use of open-source Big Data. However, we find 
that models improve precipitously for the poorest households. 
Average residuals for the lowest income decile households 
decline by nearly a third in magnitude. Given that much of the 
poverty in Belize occurs in rural areas, we believe satellite 
variables capture important features of income that are not 
observed by surveys.   

There are several motivations that justify the production of 
frequently updated poverty maps. One key function of a poverty 
map is to increase the targeting e�ciency of anti-poverty 
programs. These include not only direct transfer programs, but 
any fiscal policy that has the reduction of poverty as an outcome 
of interest. To the extent that e�orts can be directed towards 
poor areas, the e�ciency of these programs crucially depends 
on accurate information on the location of the poor. Regarding 
direct income transfers, the standard method of assigning trans-
fers involves a proxy means test, where individual household 
characteristics are used to assign poverty status in absence of a 
full consumption survey (Grosh and Baker, 1995). Firstly, poverty 
maps can help design the sample frame over which these proxy 
means tests are enacted, ensuring poor areas are adequately 
covered by income transfers (Bah et al., 2018). Secondly, the 
e�ciency of these transfers depends on whether they are timed 
according to aggregate shocks (Bazzi et al., 2015). Given the 
likely spatially heterogeneous income shocks accurtate, 
up-to-date poverty maps increases targeting e�ciency.  

Another motivation to produce frequently updated poverty 
maps is to ensure information about the location of the poor is 
transferred to higher levels of government. This is particularly 
crucial if fiscal policy has an anti-poverty aim as one of its goals, 
such as centralized transfers to support school construction in 
poor areas. Local representatives may be aware of which areas 

are poor, and can design anti-poverty e�orts e�ciently given 
their local resources. However, the information on sub-national 
poverty may not transfer to higher levels of government. Worse 
still, while qualitatively local representatives may know the rank 
ordering of poverty for areas under their representation, aggre-
gating rank order information from multiple representatives 
cannot ensure a national rank ordering is representative of true 
poverty rate. If maps are then frequently produced they may 
then be useful as an outcome to measure the relative e�ective-
ness of anti-poverty e�orts. This could improve the e�ciency of 
anti-poverty policy. While the costs of such policies are well 
known, learning the benefits of such programs requires accu-
rately measuring sub-national poverty rates, as aggregate statis-
tics may be confounded by numerous factor outside the scope 
of the anti-poverty policy.    

Poverty maps may also be used by democratic societies in 
holding their elected leaders responsible for a key welfare 
measure of interest: the fraction of their constituents that are in 
poverty. Poverty maps are easily understood by individuals with 
varying educational backgrounds. By informing constituents on 
the changing or static poverty rates of their local areas, voters 
are enabled to make informed decisions about which elected 
leaders to keep in or oust from o�ce. Elected leaders often 
make grand promises regarding various outcomes of interest, 
and yet poverty is a measure agreed on by most as an important 
metric to track. Defining this metric locally, and updating it 
frequently, aids in the political process to hold elected leaders 
responsible.  

Specifically for the Belize, the challenge is whether to implement 
a transfer based anti-poverty program or if fiscal policy should 

be designed with an anti-poverty goal, and if so, what type of 
policy should be enacted. Specifications on policy are beyond 
the scope of this document, however these estimates of sub-na-
tional poverty will be important inputs to a Hausman, Rodrik, 
and Velasco style growth diagnostics analysis. (2004).

In order to generate estimates of household income we utilize 
two datasets: first, a labor force survey that asks critical ques-
tions about income but has a relatively small sample size, and 
the second, the national census, which covers all households 
but does not directly ask about household income. 

2. Motivation for Open Source Date 
and Methods

We derived household income statistics from the April and 
September 2017 waves of the Belize Labor Force Survey, and 
use the 2010 Belize Census. The April wave surveyed 2,331 
unique households and the September wave surveyed 2,320 

households, which were repeated cross-sections and not 
necessarily the same sampled households. This resulted in 4,651 
unique households across the two waves. After removing 
missing values this resulted in a data set of 3,658 household 
level observations. We split the observations into 75% training 
data, which will be used to estimate our household level model, 
and 25% testing data, which will be used to validate our model 
at the household and enumeration district level. This testing and 
training split of the data is a standard method in machine learn-
ing (Gareth, et al., 2013), which is a necessary step to prevent 
overestimation of model performance. However, this 
testing/training splitting of the data is seldom if at all used in 
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generating poverty maps. In comparing our model perfor-
mance to other models, the directly comparable statistics will 
be the “in-sample” performance metrics, which is almost always 
more optimistic regarding model fit than the “out-of-sample” 
criteria.  

We derived 37 co-variates, or household-level variables likely 
correlated with income, from both the Census and Labor Force 
Surveys (LFS)  which were derived from identical survey ques-
tions. While the set of co-variates may seem small, consider that 
a popular software for building poverty maps provided by the 
World Bank PovMap1 can estimate at most 25 variables.  

In order to summarize satellite images at a given geographic 
level, we processed images to create summary statistics that 
capture important spatial and temporal aspects of the imagery. 
These statistics then provide information that correlates with 
conditions on the ground, such as building and vegetation 
patterns that are correlated with poverty. Satellite data provides 
several clues about the condition of households on the ground. 
Images might be able to provide information about the size of 
homes, the spatial layout of the buildings, the types and intensi-
ty of land-use, or even indicators of successful or poor agricul-
tural seasons. The challenge then is to extract a set of metrics 
from imagery that can describe some of these attributes.  

In this study we explore two approaches, one Contextual 
Features that looks at spatial and spectral patterns within 
neighborhoods within a single time period. Contextual Features 
can help us understand texture (spatial patterns observable in a 
single image), orientation, complexity, and continuity of neigh-
borhoods or groups pixels. The second approach looks at Time 
Series features, examining the change of each pixel over time. 
Here we can extract features like maximums, means, trends, 
sudden shifts, for a variety of metrics including rainfall and 
greenness.  

In the creation of Contextual Features we used imagery from 
the Sentinel 2 sensor, which is onboard two satellites owned 
and operated by the European Space Agency (ESA)2.  
The European Space Agency provides images from these 
sensors for free, and because it is on two satellites,  all of the 
earth’s land mass is observed every 5 days. Sentinel 2 imagery 
measures reflected energy from the sun in 12 wavelengths from 
the visible bands (Blue, Green and Red) into the Near Infrared 

(NIR) and Short-Wave Infrared (SWIR). Recall that a visible color 
image is composed of di�erent visible “bands”, each capture 
di�erent wavelengths, these are typically Blue, Green and Red 
bands. We focused on the visible (Blue, Green, Red) and NIR 
bands of Sentinel 2 because they have the highest spatial resolu-
tion with a pixel size of 10m.  

Because the sensor measures reflected sunlight, one of the 
di�culties in working with these data in a country such as Belize 
is cloud cover. In order to overcome these issues we use Google 
Earth Engine to create a cloud free mosaic of the entire country 
by selecting a cloud free pixel for each location over a period of 
time. This was done by selecting the median pixel in each band 
from January 1, 2017-March 31, 2018 for each time an image was 
collected by the Sentinel 2 sensors. These data provide the 
spatial detail required to observe spatial patterns across the 
landscape. 

We additionally use imagery from the Moderate Resolution 
Imaging Spectroradiometer (MODIS), which is owned and oper-
ated by the National Aeronautics and Space Administration3 
(NASA). MODIS sensors are on two satellites and acquire images 
for entire world twice daily. As such, while MODIS has a low 
spatial resolution (250m) it is compensated by its high temporal 
resolution – that is high revisit rate. Thereby these data provide 
rich information for time series statistics. Moreover, because the 
MODIS sensors have been in orbit for many years, a longer time 
series is available that allow us to summarize the properties of 
the five years leading up to the study date, from Jan 1 2013 – Dec 
31 2017. 

The time series we construct from MODIS, is the normalized 
di�erence vegetation index (NDVI). NDVI is commonly used to 
monitor the status of crops, forests, and ecosystems. NDVI is 
sensitive to the amount of chlorophyll in any location and used 
to observe approximate levels of plant productivity. Given the 
relatively small scale of agriculture in Belize, we derive the NDVI 
using the 250m vegetation products from the MODIS sensors. 

We also examine the time series properties of rainfall as 
measured by the Climate Hazards Group Infrared Precipitation 
with Station data (CHIRPS). CHIRPS is a 30+ year quasi-global 
rainfall dataset. CHIRPS incorporates 0.05° resolution satellite 
imagery with in-situ station data to create gridded rainfall time 

series for trend analysis and seasonal drought monitoring. In this 
case we resample the rain data to 75m spatial resolution to 
ensure that each enumeration area has an observation 
associated with it. We collect precipitation by dekad5 (Funk et al. 
2014). There are three dekads in a month, the first two being 10 
days long, and the third being the remaining days in the month. 
Because CHIRPS data has a similar high frequency and availabili-
ty as MODIS data above, we provide the denser set of summary 
statistics outlined in Table 2 for low-spatial resolution data. 

We utilize the Japanese sensor PALSAR/PALSAR-2 mosaic data 
to provide 25m resolution synthetic aperture radar (SAR) data. 
SAR can be used to create three-dimensional reconstruction of 
objects, such as mountains and landscapes (Kirscht 1998; Kirscht 
and Rinke 1998). SAR has been successfully used to create 
global forest/non-forest maps (Shimada et al. 2014), for assisting 
in remote crop classification (McNairn et al. 2009), to mapping 
flooding events (Shan et al. 2010).  

Open-source and freely available satellite images may hold 
many potential benefits for resource constrained agencies. For 
one, statistical agencies can commit to the price of 0$ for 
open-source imagery in perpetuity. In comparison, a statistical 
agency that incorporates proprietary data into their statistical 
pipeline opens themselves to price gouging as proprietary data 
providers have pricing power due to “lock-in” e�ects (Arthur, 
1989). Data lock-in e�ects could occur if there are considerably 
costs moving from one data provider to another, for example 
because of costs of sta� adapting to new software or methods. 
Thus an initially low cost for proprietary data could balloon into 
larger costs if firms are profit maximizing and choose to exert 
pricing power.  

At the extreme end of firm profit maximizing behavior, it’s possi-
ble that even with competition among data providers, any 
surplus from using Big Data at statistical agencies may eventually 
be captured by proprietary data providers because of these lock 
in e�ects. Thus, it’s crucial to consider open-source alternatives 
to proprietary providers. This paper fills a necessary gap in the 
literature whereby we explore whether these open-source 
alternatives may be of use to the prototypical statistical agency.

Data



Remotely Sensed Data 

2. MODIS Imagery: Time Series Data

1. Sentinel-2 Imagery: Contextual Features

3. CHIRPS Rainfall: Time Series Data

In order to generate estimates of household income we utilize 
two datasets: first, a labor force survey that asks critical ques-
tions about income but has a relatively small sample size, and 
the second, the national census, which covers all households 
but does not directly ask about household income. 

We derived household income statistics from the April and 
September 2017 waves of the Belize Labor Force Survey, and 
use the 2010 Belize Census. The April wave surveyed 2,331 
unique households and the September wave surveyed 2,320 

households, which were repeated cross-sections and not 
necessarily the same sampled households. This resulted in 4,651 
unique households across the two waves. After removing 
missing values this resulted in a data set of 3,658 household 
level observations. We split the observations into 75% training 
data, which will be used to estimate our household level model, 
and 25% testing data, which will be used to validate our model 
at the household and enumeration district level. This testing and 
training split of the data is a standard method in machine learn-
ing (Gareth, et al., 2013), which is a necessary step to prevent 
overestimation of model performance. However, this 
testing/training splitting of the data is seldom if at all used in 
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generating poverty maps. In comparing our model perfor-
mance to other models, the directly comparable statistics will 
be the “in-sample” performance metrics, which is almost always 
more optimistic regarding model fit than the “out-of-sample” 
criteria.  

We derived 37 co-variates, or household-level variables likely 
correlated with income, from both the Census and Labor Force 
Surveys (LFS)  which were derived from identical survey ques-
tions. While the set of co-variates may seem small, consider that 
a popular software for building poverty maps provided by the 
World Bank PovMap1 can estimate at most 25 variables.  

In order to summarize satellite images at a given geographic 
level, we processed images to create summary statistics that 
capture important spatial and temporal aspects of the imagery. 
These statistics then provide information that correlates with 
conditions on the ground, such as building and vegetation 
patterns that are correlated with poverty. Satellite data provides 
several clues about the condition of households on the ground. 
Images might be able to provide information about the size of 
homes, the spatial layout of the buildings, the types and intensi-
ty of land-use, or even indicators of successful or poor agricul-
tural seasons. The challenge then is to extract a set of metrics 
from imagery that can describe some of these attributes.  

In this study we explore two approaches, one Contextual 
Features that looks at spatial and spectral patterns within 
neighborhoods within a single time period. Contextual Features 
can help us understand texture (spatial patterns observable in a 
single image), orientation, complexity, and continuity of neigh-
borhoods or groups pixels. The second approach looks at Time 
Series features, examining the change of each pixel over time. 
Here we can extract features like maximums, means, trends, 
sudden shifts, for a variety of metrics including rainfall and 
greenness.  

In the creation of Contextual Features we used imagery from 
the Sentinel 2 sensor, which is onboard two satellites owned 
and operated by the European Space Agency (ESA)2.  
The European Space Agency provides images from these 
sensors for free, and because it is on two satellites,  all of the 
earth’s land mass is observed every 5 days. Sentinel 2 imagery 
measures reflected energy from the sun in 12 wavelengths from 
the visible bands (Blue, Green and Red) into the Near Infrared 

https://www.worldbank.org/en/research/brief/software-for-poverty-mapping
https://sentinel.esa.int
https://modis.gsfc.nasa.gov 
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(NIR) and Short-Wave Infrared (SWIR). Recall that a visible color 
image is composed of di�erent visible “bands”, each capture 
di�erent wavelengths, these are typically Blue, Green and Red 
bands. We focused on the visible (Blue, Green, Red) and NIR 
bands of Sentinel 2 because they have the highest spatial resolu-
tion with a pixel size of 10m.  

Because the sensor measures reflected sunlight, one of the 
di�culties in working with these data in a country such as Belize 
is cloud cover. In order to overcome these issues we use Google 
Earth Engine to create a cloud free mosaic of the entire country 
by selecting a cloud free pixel for each location over a period of 
time. This was done by selecting the median pixel in each band 
from January 1, 2017-March 31, 2018 for each time an image was 
collected by the Sentinel 2 sensors. These data provide the 
spatial detail required to observe spatial patterns across the 
landscape. 

We additionally use imagery from the Moderate Resolution 
Imaging Spectroradiometer (MODIS), which is owned and oper-
ated by the National Aeronautics and Space Administration3 
(NASA). MODIS sensors are on two satellites and acquire images 
for entire world twice daily. As such, while MODIS has a low 
spatial resolution (250m) it is compensated by its high temporal 
resolution – that is high revisit rate. Thereby these data provide 
rich information for time series statistics. Moreover, because the 
MODIS sensors have been in orbit for many years, a longer time 
series is available that allow us to summarize the properties of 
the five years leading up to the study date, from Jan 1 2013 – Dec 
31 2017. 

The time series we construct from MODIS, is the normalized 
di�erence vegetation index (NDVI). NDVI is commonly used to 
monitor the status of crops, forests, and ecosystems. NDVI is 
sensitive to the amount of chlorophyll in any location and used 
to observe approximate levels of plant productivity. Given the 
relatively small scale of agriculture in Belize, we derive the NDVI 
using the 250m vegetation products from the MODIS sensors. 

We also examine the time series properties of rainfall as 
measured by the Climate Hazards Group Infrared Precipitation 
with Station data (CHIRPS). CHIRPS is a 30+ year quasi-global 
rainfall dataset. CHIRPS incorporates 0.05° resolution satellite 
imagery with in-situ station data to create gridded rainfall time 

series for trend analysis and seasonal drought monitoring. In this 
case we resample the rain data to 75m spatial resolution to 
ensure that each enumeration area has an observation 
associated with it. We collect precipitation by dekad5 (Funk et al. 
2014). There are three dekads in a month, the first two being 10 
days long, and the third being the remaining days in the month. 
Because CHIRPS data has a similar high frequency and availabili-
ty as MODIS data above, we provide the denser set of summary 
statistics outlined in Table 2 for low-spatial resolution data. 

We utilize the Japanese sensor PALSAR/PALSAR-2 mosaic data 
to provide 25m resolution synthetic aperture radar (SAR) data. 
SAR can be used to create three-dimensional reconstruction of 
objects, such as mountains and landscapes (Kirscht 1998; Kirscht 
and Rinke 1998). SAR has been successfully used to create 
global forest/non-forest maps (Shimada et al. 2014), for assisting 
in remote crop classification (McNairn et al. 2009), to mapping 
flooding events (Shan et al. 2010).  



For more detail on the methods we refer the reader to the book Gareth et al., (2013) available at: 
http://faculty.marshall.usc.edu/gareth-james/ISL/

Dekad refers to a period of ten days 
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In order to generate estimates of household income we utilize 
two datasets: first, a labor force survey that asks critical ques-
tions about income but has a relatively small sample size, and 
the second, the national census, which covers all households 
but does not directly ask about household income. 

We derived household income statistics from the April and 
September 2017 waves of the Belize Labor Force Survey, and 
use the 2010 Belize Census. The April wave surveyed 2,331 
unique households and the September wave surveyed 2,320 

households, which were repeated cross-sections and not 
necessarily the same sampled households. This resulted in 4,651 
unique households across the two waves. After removing 
missing values this resulted in a data set of 3,658 household 
level observations. We split the observations into 75% training 
data, which will be used to estimate our household level model, 
and 25% testing data, which will be used to validate our model 
at the household and enumeration district level. This testing and 
training split of the data is a standard method in machine learn-
ing (Gareth, et al., 2013), which is a necessary step to prevent 
overestimation of model performance. However, this 
testing/training splitting of the data is seldom if at all used in 

generating poverty maps. In comparing our model perfor-
mance to other models, the directly comparable statistics will 
be the “in-sample” performance metrics, which is almost always 
more optimistic regarding model fit than the “out-of-sample” 
criteria.  

We derived 37 co-variates, or household-level variables likely 
correlated with income, from both the Census and Labor Force 
Surveys (LFS)  which were derived from identical survey ques-
tions. While the set of co-variates may seem small, consider that 
a popular software for building poverty maps provided by the 
World Bank PovMap1 can estimate at most 25 variables.  

In order to summarize satellite images at a given geographic 
level, we processed images to create summary statistics that 
capture important spatial and temporal aspects of the imagery. 
These statistics then provide information that correlates with 
conditions on the ground, such as building and vegetation 
patterns that are correlated with poverty. Satellite data provides 
several clues about the condition of households on the ground. 
Images might be able to provide information about the size of 
homes, the spatial layout of the buildings, the types and intensi-
ty of land-use, or even indicators of successful or poor agricul-
tural seasons. The challenge then is to extract a set of metrics 
from imagery that can describe some of these attributes.  

In this study we explore two approaches, one Contextual 
Features that looks at spatial and spectral patterns within 
neighborhoods within a single time period. Contextual Features 
can help us understand texture (spatial patterns observable in a 
single image), orientation, complexity, and continuity of neigh-
borhoods or groups pixels. The second approach looks at Time 
Series features, examining the change of each pixel over time. 
Here we can extract features like maximums, means, trends, 
sudden shifts, for a variety of metrics including rainfall and 
greenness.  

In the creation of Contextual Features we used imagery from 
the Sentinel 2 sensor, which is onboard two satellites owned 
and operated by the European Space Agency (ESA)2.  
The European Space Agency provides images from these 
sensors for free, and because it is on two satellites,  all of the 
earth’s land mass is observed every 5 days. Sentinel 2 imagery 
measures reflected energy from the sun in 12 wavelengths from 
the visible bands (Blue, Green and Red) into the Near Infrared 

(NIR) and Short-Wave Infrared (SWIR). Recall that a visible color 
image is composed of di�erent visible “bands”, each capture 
di�erent wavelengths, these are typically Blue, Green and Red 
bands. We focused on the visible (Blue, Green, Red) and NIR 
bands of Sentinel 2 because they have the highest spatial resolu-
tion with a pixel size of 10m.  

Because the sensor measures reflected sunlight, one of the 
di�culties in working with these data in a country such as Belize 
is cloud cover. In order to overcome these issues we use Google 
Earth Engine to create a cloud free mosaic of the entire country 
by selecting a cloud free pixel for each location over a period of 
time. This was done by selecting the median pixel in each band 
from January 1, 2017-March 31, 2018 for each time an image was 
collected by the Sentinel 2 sensors. These data provide the 
spatial detail required to observe spatial patterns across the 
landscape. 

We additionally use imagery from the Moderate Resolution 
Imaging Spectroradiometer (MODIS), which is owned and oper-
ated by the National Aeronautics and Space Administration3 
(NASA). MODIS sensors are on two satellites and acquire images 
for entire world twice daily. As such, while MODIS has a low 
spatial resolution (250m) it is compensated by its high temporal 
resolution – that is high revisit rate. Thereby these data provide 
rich information for time series statistics. Moreover, because the 
MODIS sensors have been in orbit for many years, a longer time 
series is available that allow us to summarize the properties of 
the five years leading up to the study date, from Jan 1 2013 – Dec 
31 2017. 

The time series we construct from MODIS, is the normalized 
di�erence vegetation index (NDVI). NDVI is commonly used to 
monitor the status of crops, forests, and ecosystems. NDVI is 
sensitive to the amount of chlorophyll in any location and used 
to observe approximate levels of plant productivity. Given the 
relatively small scale of agriculture in Belize, we derive the NDVI 
using the 250m vegetation products from the MODIS sensors. 

We also examine the time series properties of rainfall as 
measured by the Climate Hazards Group Infrared Precipitation 
with Station data (CHIRPS). CHIRPS is a 30+ year quasi-global 
rainfall dataset. CHIRPS incorporates 0.05° resolution satellite 
imagery with in-situ station data to create gridded rainfall time 

series for trend analysis and seasonal drought monitoring. In this 
case we resample the rain data to 75m spatial resolution to 
ensure that each enumeration area has an observation 
associated with it. We collect precipitation by dekad5 (Funk et al. 
2014). There are three dekads in a month, the first two being 10 
days long, and the third being the remaining days in the month. 
Because CHIRPS data has a similar high frequency and availabili-
ty as MODIS data above, we provide the denser set of summary 
statistics outlined in Table 2 for low-spatial resolution data. 

4. Synthetic Aperture Radar

Satellite Imagery Methods Overview 

We utilize the Japanese sensor PALSAR/PALSAR-2 mosaic data 
to provide 25m resolution synthetic aperture radar (SAR) data. 
SAR can be used to create three-dimensional reconstruction of 
objects, such as mountains and landscapes (Kirscht 1998; Kirscht 
and Rinke 1998). SAR has been successfully used to create 
global forest/non-forest maps (Shimada et al. 2014), for assisting 
in remote crop classification (McNairn et al. 2009), to mapping 
flooding events (Shan et al. 2010).  

Most surveys which measure income or consumption do not 
sample all areas where policy makers would like to understand 
poverty or welfare. Many low-income areas are largely inacces-
sible or sparsely populated. Even when they do sample all 
areas, there may not be su�cient observations to generate 
welfare statistics at the spatial resolution required to inform 
policy decisions. As a result, most estimates of welfare at the 
local level are generated through small area estimation, 
techniques which typically match a target survey, which 
measures the variable of interest (poverty, consumption or 
income), and a census, which contains su�cient observations 
from which one can accurately calculate welfare. These proce-
dures first estimate household level models of income using 
the consumption survey, then use these models to predict 
household level income or consumption in the census. 

We follow this methodology but deviate in that we use 
machine learning methods rather than parametric approaches, 
as used in Elbers et al., (2003), to estimate household level 
models of income. We use machine learning methods because 
they have favorable properties for building poverty maps when 
the number of variables used is large, as is the case with our 
models where we have access to a rich set of satellite-derived 
variables (Afzal et al., 2015).  

We utilize four machine learning models to estimate household 
level income and eventually local area poverty: 1) Ridge 

Regression (Hoerl and Kennard, 1970), 2) Elastic Net regression 
(Zou and Hastie, 2005), 3) Random Forest (Breiman, 2001), and 
4) Extreme Gradient Boosted Trees (Friedman, 2001). We lastly 
estimate model 5) which creates a simple average of the four 
estimated models.

A detailed discussion of the methods is beyond the scope of this 
article4, however, one important note is that the first two meth-
ods are linear models that use machine learning for variable 
selection. The second two are tree-based ensemble methods of 
multiple regression trees. This is important in that linear models 
may perform worse in extrapolation if the space into which they 
are predicting are su�ciently di�erent from the areas in which 
they have been estimated. The tree models (models 3-4) may be 
more robust in their predictions.  
The Appendix contains additional information on the machine 

learning modeling process, and we refer the curious reader there.
Two primary methods are used to extract useful information from 
raw remotely sensed imagery, contextual features and time-series 
features. The original, raw image of a location, while useful for 
human interpretation, provides little useful information for pover-
ty modeling. Instead we must devise ways to extract specific 

Methods   
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Contextual Features 

components of an image that might be useful. For instance, 
does the image have many long lines pointing in the same direc-
tion, or are they short and complex? In this case a residential 
area with lots of short complex lines might indicate that it is an 
informal settlement. This type of information will be captured by 
“Contextual Features” in the following section. Or alternatively 
we can look a series of images over time and see if there were 
any sudden shifts in rainfall or greenness over time that may 
impact agricultural productivity. This type of information will be 
described in “Time-Series Features” in a later section.  

One powerful set of methods to summarize satellite images is 
known as contextual features. Contextual features are informa-
tion that represent the spatial and spectral values derived from 
satellite imagery based on neighborhoods or groups of pixels. In 

the past we have shown that these features are strongly 
correlated with population and poverty variation within Sri 
Lanka and Ghana (Engstrom et al., n.d.). For the most part, past 
research of this nature has used very high spatial resolution 
imagery (2m spatial resolution and lower). While these data 
provide a tremendous amount of detail, there are major draw-
backs including high cost, and di�culty covering large areas. 
Recent research has used data from the freely available, Senti-
nel-2 sensors, which have extensive spatial coverage, thus 
allowing us to easily and freely, collect imagery over large areas 
(i.e., entire countries).  

A cloud free image, Sentinel-2 mosaic was used as the input to 
calculate contextual features using the Python package SpFeas. 
SpFeas is an open-source Python library for processing contex-
tual image features from satellite imagery. The 11 contextual 
features calculated are as follows: 
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Gabor Filter A linear Gaussian filter used for 
edge detection 

Finds edges of buildings and 
determines if they are in similar 
directions. 

(Mehrotra, Namuduri, and Rangana-
than 1992) 

Lacunarity (LAC) Describes the extent of gaps and 
holes in a texture.  

Finds gaps within areas. Can 
determine if buildings are close 
together or have space between. 

(Myint, Mesev, and Lam 2006) 

Oriented FAST and 
Rotated Brief (ORB) 

Selects key points for image 
matching and object recognition. ) 
It is similar Speeded Up Robust 
Features (SURF). 

Finds bright things such as buildings 
in imagery. 

(Rublee et al. 2011) 

Histogram of Oriented 
Gradients (HOG) 

Captures the orientation and 
magnitude of the shades of the 
image 

Finds the orientation of edges of 
buildings and groups them together.  

(Dalal and Triggs 2005) 

Line Support Regions 
(LSR) 

Characterize line attributes Characterizes the lengths of lines, 
typically roads and building edges. 

(Ünsalan and Boyer 2005)  

Local Binary Patterns 
Moments (LBPM) 

Define contiguous regions of pixel 
groups and sorts them into a 
histogram 

Finds buildings and neighborhoods 
of di�erent sizes. 

(Ojala, Pietikäinen, and Mäenpää 
2002) 

Normalized Di�erence 
Vegetation Index (NDVI) 

The most widely used vegetation 
index that provides information 
about the health and amount of 
vegetation 

Determines the presence or absence 
of vegetation.  

(C J Tucker 1979) 

Mean The average brightness in the Blue, 
Green, and NIR bands 

Finds bright and dark areas. Can help 
find vegetation. 

Structural Feature Sets 
(SFS) 

Statistical measures to extract the 
structural features of direction lines 

Finds road and building edges and 
characterizes the size and length. 

(Huang, Zhang, and Li 2007) 

PanTex Is a built-up presence index derived 
from the grey-level co-occurrence 
matrix 

Used to determine if areas have 
buildings or not. If buildings present, 
can help understand size. 

(Pesaresi, Gerhardinger, and 
Kayitakire 2008) 

Fourier Transform Detects high or low frequency of 
lines 

Can be used to determine if 
neighbourhoods are on a grid 
pattern. 

Name Description Interpretation Source 

Table 1: Description of contextual features used in the analysis 
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Time-Series Features 

Figure 1 Belize City contextual features 
Displayed in A is the true color (Blue, Green, and Red) Sentinel 2 image for Belize City,  B is the Pantex measure derived for this area at scale 3 
(30m), C is the Mean Fourier transform at scale 31 (310m), D) is the second Gabor Filter at scale 3 (30m), E is the Mean brightness at scale 3 
(30m), and F is the Lacunarity measure at scale 3 (30m). 

Belize city Pantex, scale 3 Fourier Mean, scale 31 

Lacunarity, scale 3 Mean, scale 3 Gabor Filter 2, scale 3 

Contextual features are created by comparing central pixels 
with their neighbors and then reporting this value back to the 
central pixel (in this case 10m). Thus, contextual features 
measure the “context” in which an individual pixel is situated, 
using information from surrounding pixels. The number of 
neighboring pixels considered in the comparison is the “scale”, 
which varies by the feature being calculated. 
 
When applied to satellite imagery, the features capture 
“texture” or spatial variability and spectral values of neighbor-
hoods. As an example, the Pantex feature captures the 
minimum contrast between a pixel and its neighbors. Highly 
built-up neighborhoods tend to have greater contrast in all 
directions, which will create high values of this feature. In 
contrast, in rural areas the pixel’s brightness will likely be similar 
to a neighbor in at least one direction, which will create a low 
minimum contrast. To help visualize what contextual features 
capture we present a number of features for Belize City in 

Figure 1. For more detail on Contextual Features please refer to 
the Appendix.
 
While the contextual features we developed may not predict as 
well as features derived from convolutional neural networks, the 
latter require many times more data than are currently available 
in most poverty surveys. In contrast, our method does not require 
a massive amount of training data, are simpler and cheaper to 
calculate, and have proven robust in other settings.  

To complement the contextual features described above, we also 
calculate several time series properties. Time series properties 
can play an important role in predicting household well-being. 
For instance, if an agricultural community has experienced below 
average rainfall for the last five years, this can be determined by 
looking at the time series for precipitation. Moreover, a variety of 

statistics can provide invaluable information, for instance, the 
maximum greenness of an agricultural area is correlated with 
agricultural yields and plant productivity (Mann, Warner, and 
Malik 2019; Mann and Warner 2017). Time series can also pick up 
on the e�ects of drought, flooding, or even the slow sustained 
loss in productivity. 

TS-Raster (TS) is a python package for analyzing time-series 
characteristics from raster data. It allows feature extraction, 
dimension reduction and applications of machine learning 
techniques for geospatial data. 
 
TS’s primary significance is the ability to provide an extensive 
set of time-series properties, including simple metrics like 
minimums or maximums, but also more complex ones like the 
number of peaks observed within a year, or the number of 
observations above or below the mean. TS should be able to 
meaningfully characterize the time series of high frequency 
data products like those from MODIS or CHIRPS. For a visual 
example of what kinds of properties TS extracts see Figure 2. 

A summary of time series attributes are provided below (Tables 
2). The feature name indicates the naming convention used for 
data storage, the description provides a simplified description of 
that statistic, and use descriptions provide some context for how 
that attribute might be useful in our modeling. Table 2 provides a 
partial list of statistics collected from data with very high tempo-
ral resolution (MODIS, CHIRPS). More summary statistics can be 
provided for this data because the time series has more observa-
tions (see Table 2A in the appendix), and therefore is more 
complex. Table 6 in the appendix, provides a full list of statistics 
gathered from sensors that are collected less often (ranging 
from once every 5 to 30 days depending on cloud cover). This is 
temporal data from sensors such as Sentinel-2 and 
PALSAR/PALSAR-2. 

LandTrendr (LT) is a broadly used algorithm that detects sudden 
shifts in an index. For this study we examined NDVI (a satellite 
measure of vegetation health), on a pixel-by-pixel basis. Due to 
it’s lack of importance in the final models, we have moved the 
description of this data product to the appendix.  
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1. Dense temporal feature extraction

2. LandTrendr

Figure 2 Examples of TS-Raster time series properties 
In this example the light blue line is plot of a time series for a single pixel in an image. Red boxes are used to highlight a series of time series 
attributes that can be extracted with TS-Raster. ‘ 
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Contextual features are created by comparing central pixels 
with their neighbors and then reporting this value back to the 
central pixel (in this case 10m). Thus, contextual features 
measure the “context” in which an individual pixel is situated, 
using information from surrounding pixels. The number of 
neighboring pixels considered in the comparison is the “scale”, 
which varies by the feature being calculated. 
 
When applied to satellite imagery, the features capture 
“texture” or spatial variability and spectral values of neighbor-
hoods. As an example, the Pantex feature captures the 
minimum contrast between a pixel and its neighbors. Highly 
built-up neighborhoods tend to have greater contrast in all 
directions, which will create high values of this feature. In 
contrast, in rural areas the pixel’s brightness will likely be similar 
to a neighbor in at least one direction, which will create a low 
minimum contrast. To help visualize what contextual features 
capture we present a number of features for Belize City in 

Figure 1. For more detail on Contextual Features please refer to 
the Appendix.
 
While the contextual features we developed may not predict as 
well as features derived from convolutional neural networks, the 
latter require many times more data than are currently available 
in most poverty surveys. In contrast, our method does not require 
a massive amount of training data, are simpler and cheaper to 
calculate, and have proven robust in other settings.  

To complement the contextual features described above, we also 
calculate several time series properties. Time series properties 
can play an important role in predicting household well-being. 
For instance, if an agricultural community has experienced below 
average rainfall for the last five years, this can be determined by 
looking at the time series for precipitation. Moreover, a variety of 

statistics can provide invaluable information, for instance, the 
maximum greenness of an agricultural area is correlated with 
agricultural yields and plant productivity (Mann, Warner, and 
Malik 2019; Mann and Warner 2017). Time series can also pick up 
on the e�ects of drought, flooding, or even the slow sustained 
loss in productivity. 

TS-Raster (TS) is a python package for analyzing time-series 
characteristics from raster data. It allows feature extraction, 
dimension reduction and applications of machine learning 
techniques for geospatial data. 
 
TS’s primary significance is the ability to provide an extensive 
set of time-series properties, including simple metrics like 
minimums or maximums, but also more complex ones like the 
number of peaks observed within a year, or the number of 
observations above or below the mean. TS should be able to 
meaningfully characterize the time series of high frequency 
data products like those from MODIS or CHIRPS. For a visual 
example of what kinds of properties TS extracts see Figure 2. 

A summary of time series attributes are provided below (Tables 
2). The feature name indicates the naming convention used for 
data storage, the description provides a simplified description of 
that statistic, and use descriptions provide some context for how 
that attribute might be useful in our modeling. Table 2 provides a 
partial list of statistics collected from data with very high tempo-
ral resolution (MODIS, CHIRPS). More summary statistics can be 
provided for this data because the time series has more observa-
tions (see Table 2A in the appendix), and therefore is more 
complex. Table 6 in the appendix, provides a full list of statistics 
gathered from sensors that are collected less often (ranging 
from once every 5 to 30 days depending on cloud cover). This is 
temporal data from sensors such as Sentinel-2 and 
PALSAR/PALSAR-2. 

LandTrendr (LT) is a broadly used algorithm that detects sudden 
shifts in an index. For this study we examined NDVI (a satellite 
measure of vegetation health), on a pixel-by-pixel basis. Due to 
it’s lack of importance in the final models, we have moved the 
description of this data product to the appendix.  
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maximum 

mean 

mean_change 

median 

minimum 

sum_values 

agg_linear_trend_f_agg“max-
”__ chunk_len_6_attr“slope” 

agg_linear_trend_f_agg“min”__ 
chunk_len_6_attr“slope” 

longest_strike_above_mean 

longest_strike_below_mean 

count_above_mean

count_below_mean 

Global maximum value 

Global mean value 

Average change between any 
two periods in series 

Global median value 

Global minimum value 

Sum of all values across the 
time period 

Maximum observed trend 
during any 6 periods 

Minimum observed trend 
during any 6 periods 

Maximum number of observations 
sustained above the mean value 

Maximum number of observations 
sustained above the mean value 

Highest observed greenness / 
rainfall 

Average observed greenness / 
rainfall 

Instability in time series (irregular 
rain) 

Average observed greenness / 
rainfall 

Minimum observed greenness / 
rainfall 

Excess or insu�cient rain, or crop 
failure  

Sudden positive shocks (flood) 

Sudden negative shocks (drought, 
land use change) 

Measure of sustained excess rain 

Measure of sustained drought 

Persistent shifts up (increase in 
rainfall) 

Persistent shifts down (decrease in 
rainfall) 

Number of observations above 
the global mean 

Number of observations below 
the global mean 

Opportunities Challenges Interpretation 

Table 2 Description of high temporal resolution time-series feature
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To validate the household-level income models that we used to 
produce sub-national estimates of poverty, we first examined 
diagnostics from those household models in Table 3. We show 
results for the separate machine learning models used, as well as 
for the set of variables the model can access: 1) satellite variables 
and survey variables, 2) variables in the LFS and census surveys 
only, and 3) the satellite derived variables only. We consider two 
performance metrics: root mean squared error (RMSE), which 
gives a measure of average error interpreted in units of log 
household income, and R2, which measures the coe�cient of 
determination between predicted household income and true 
household income. Model performance metrics at the household 
level are shown in Table 3. Note that lower RMSE values indicate 
a better model performance. An R2 close to 1 indicates a perfect 
relationship between the predicted and true household income, 
and a value of 0 indicates no relationship between predicted and 
true.  

To better characterize our true out-of-sample performance, 
remember that we separated our dataset into two groups. The 
first 75% of observations, called the “training” set, is used to fit all 
models. The remaining 25% of observations are held out as an 
independent “testing” set and provides a much more realistic 
measure of model performance.  

Comparing the performance in the training and test sets, we note 
that in-sample performance on the training set significantly 
overstates model performance. R2 values indicate we explain 
between 42%-86% of the variation in household income when 
just looking at performance in the training set (using the survey & 

Model Results and Diagnostics 

satellite variables). Out-of-sample performance in the testing set 
drop as expected. R2 values indicate that we can explain 30-36% 
of variation at the household level using survey & satellite variable 
models. In-sample model performance can exceed 80%. Clearly, 
any study reporting solely results from the training set would 
dramatically overstate the true explanatory power of their model.  
Comparing across the set of variables employed, we see, unsur-
prisingly, that models with the most variables – survey & satellite 
-- tend to perform best. This is followed by models that use infor-
mation only available in the survey, which have R2 values that vary 
between 0.30-0.34, indicating we can reliably explain between 
30-34% of the variation in household income using survey 
variables alone. In comparison, models that use only contextual 
and time series satellite derived variables can explain 12.4%-14.4% 
variation in household level income. 

1. Model Performance With and Without 
Satellite Variables

2. Machine Learning Model Comparison

Across machine learning models we see high levels of variability 
across training set model performance. Meanwhile, actual perfor-
mance in the test set is more consistent between machine learn-
ing models. In the test set R2 values vary between 0.30-0.36, for 
the preferred models using satellite and survey variables. The 
best performing individual model is Extreme Gradient Boosted 
Trees, with an R2 of 0.349, followed by the Elastic Net model with 
an R2 of 0.34. Ridge performs only slightly worse with a test-set 
R2 of 0.338, and finally random forest performs the worst with 
an R2 of 0.298. The highest performing model overall is the 
combined model which averages all the model predictions, which 
has combined R2 score of 0.36, and an RMSE value of 0.65.  

Inter-American
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Figure 3 Predicted versus true plots for ED level household income predictions 
These plots show estimated average income versus true average income using the “combined” model averaging estimates between the Ridge, 
Elastic Net, Random Forest, and Extreme Gradient Boosted Trees models. Note the training sample is the data on which our model has been estimat-
ed, and the test data sample is the validation sample, which was not used to directly estimate our model.  
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Recall that in these models variables are randomly selected at each node and therefore some trees will not contain particular variables. 6

3. Enumeration District Level Prediction 
Comparisons

1. Variable Importance

Model Validation and Residuals 
Diagnostics 

Satisfied with a household level model of income that performs 
adequately well, we then generate predictions for every house-
hold in the Census. These household level predictions are 
averaged at the ED level to generate average ED income. Results 
in the previous analysis lead us to believe the best performing 
model is the combined model, which averages household 
income predictions across the four machine learning models. 

Figure 3 above shows predicted versus true plots at the enumer-
ation district level in the testing and training samples of the data. 
Each point shows, therefore, the predicted average income for 
an ED (on the x-axis) against the true average income (on the 
y-axis). We scale the size of each point by the total population in 
each ED, and color code them by district. We see a better fit to 
the 45 degree line (indicating perfect prediction performance) 
for the training dataset (data which was used to estimate the 
model) versus the test dataset (data used to validate the 
model). However, we see consistently good performance in both 
of these datasets. 

To complement the information in Figure 3, we present numeri-
cal summaries of the same information in Table 4 . We see that 
the R², or the coe�cient of variation between predicted average 
ED incomes is highest when using both the satellite and survey 
variables. In the test set, the most reliable measure of 
out-of-sample performance, we see an R2 value of 0.55 using 
both satellite and survey variables. This falls to 0.50 when we 
use survey variables only. When we use only satellite variables, 
we find an R² performance of about 0.30, indicating satellite 
variables alone explain 30% of the variation in ED level average 
incomes. Again, we see the large decline in performance from 
the training versus test sets, indicating a clear need to use 
testing sets as proper validation of performance. 

Exploring which variables – derived from satellites or surveys -- 
have the most impact on the predictive power of the models is 
complicated by the fact that there are so many variables, and the 
variables interact non-linearly in our tree based models (random 
forests and extreme gradient boosted trees). With simple linear 
models applied to a more reduced set of variables, we can view 
estimated coe�cients and the resulting t-statistics to determine 
statistical significance. This is not feasible here given the large set 
of variables used. One way we can examine which variables 
improve model performance is by calculating variable impor-
tance. This at least provides the relative importance for each 
variable within a given machine learning model. Variable impor-
tance for linear models – Ridge and Elastic Net -- is calculated as 
the absolute value of the t-statistics, which is the coe�cient 
divided by the standard error. For the tree-based models, the 
variable importance is calculated by averaging all the trees that 
do not contain a particular variable6, and comparing mean 
decrease in final classification purity (or accuracy) against 
models that do contain these variables. Again, we cannot 
compare how much each variable improves the models across 
model types, but we can compare within models, thus we scale 
the variables importance scores within a model such that 100 is 
the most important variable, and 50 is half as important as the 
most important variable. 

In the appendix, Figures 6 and 7 present the variable importance 
metrics across the four machine learning models, plotting the top 
30 most important variables for each. The Ridge, Random 
Forests, and Extreme Gradient Boosted Trees select head of 
household years of education as the most important variable. 
Elastic Net models also considers this variable important, select-
ing it third behind number of dependents and number of 
children. Next most important variables are a set of asset 
variables – whether a household has high quality cooking fuel, 
toilet, number of computers, cable access, TV, refrigerator, 
number of vehicles, and electric washers.  

Following these variables, we see several satellite derived 
variables appear, both generated from the time series as well as 
contextual cross-sectional information. For the time series 
variables, the longest period below or above mean precipitation 
tend to be important variables, indicating that areas with long 
periods of drought or excess rain correlates with changes in 
income, likely in agricultural areas. Similarly, streaks of NDVI 
above or below the average level for these areas tend to be 
predictive of income. Contextual satellite information also appear 
to be strongly predictive of average incomes. Elastic Net models 
pick many of these variables – NDVI at 3 pixel scale, SFS at 31 and 
71 pixel scale, oriented fast and rotated brief (ORB) at scale 71 
pixels, and local binary pattern moments at 3 pixel scale.  
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Table 4 Enumeration District Level Performance Metrics. Metrics 
compare true ED average income with predicted average ED 
income using the “Combined” model, with variable sets. 

Overall, while variables derived from surveys tend to be the 
strongest predictors of household income, almost all machine 
learning models improve with the addition of satellite derived 
variables, and within models outside of the top 5 or 10 most 
important variables, satellite features tend to be strongly 
predictive of household income.  

One concern with small area estimates is that our model may be 
biased, not on average, but for particular sub-populations 
whose outcomes we would like to measure with high precision. 
For instance we need to ensure we are not producing biased 
estimates of incomes for the poorest populations. Therefore, 
residuals diagnostics by subgroups is a crucial component of 
any small estimation model.  

Figure 4 A presents, for the survey only models, the average 
residuals (true household income minus predicted income) and 
standard errors by household income decile in the test sample. 
We use the predictions from the combined model, which calcu-
lates the predicted household income as the mean of the four 
machine learning models. For each income decile, we calculate 
the average (bar graph length) and the estimated standard 
error (black bar). Note that the lowest errors are seen for house-
holds in the middle of the income distribution, from log incomes 

of 6.38 to 7.22. For households within this range, errors are 
roughly symmetric around zero, and small in magnitude. This 
indicates we can assume, for households within this income 
range, our models of income are accurate and unbiased. 

As we move to the two highest and lowest income deciles, we 
see the average residuals grow. For the richest households, 
residuals are positive, indicating we under predict income for 
these households. For the poorest households, residuals are 
negative, indicating we over predict incomes for these house-
holds. In general, our models of poverty tend to understate the 
true variance of household incomes.  

However, in comparing the top panel A (survey variables only) 
with the bottom panel B (satellite and survey variables) we see 
that the residuals for the poorest and richest households are 
smaller for the satellite and survey models. In particular, residuals 
for the poorest decile decline from around -0.75 to -0.5. The 
black standard error bars show that the two poorest deciles for 
the survey only models (panel A) are biased, whereas the 
standard errors bars for the satellite and survey models (panel B) 
cross the zero threshold. We see similar improvement in the 
richest deciles when comparing the satellite and survey to the 
survey models alone, indicating satellite features help predict 
rich households as well. Taken together, the satellite features 
help recover critical characteristics of the most important 
income deciles. 
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2. Residuals Diagnostics 

Exploring which variables – derived from satellites or surveys -- 
have the most impact on the predictive power of the models is 
complicated by the fact that there are so many variables, and the 
variables interact non-linearly in our tree based models (random 
forests and extreme gradient boosted trees). With simple linear 
models applied to a more reduced set of variables, we can view 
estimated coe�cients and the resulting t-statistics to determine 
statistical significance. This is not feasible here given the large set 
of variables used. One way we can examine which variables 
improve model performance is by calculating variable impor-
tance. This at least provides the relative importance for each 
variable within a given machine learning model. Variable impor-
tance for linear models – Ridge and Elastic Net -- is calculated as 
the absolute value of the t-statistics, which is the coe�cient 
divided by the standard error. For the tree-based models, the 
variable importance is calculated by averaging all the trees that 
do not contain a particular variable6, and comparing mean 
decrease in final classification purity (or accuracy) against 
models that do contain these variables. Again, we cannot 
compare how much each variable improves the models across 
model types, but we can compare within models, thus we scale 
the variables importance scores within a model such that 100 is 
the most important variable, and 50 is half as important as the 
most important variable. 

In the appendix, Figures 6 and 7 present the variable importance 
metrics across the four machine learning models, plotting the top 
30 most important variables for each. The Ridge, Random 
Forests, and Extreme Gradient Boosted Trees select head of 
household years of education as the most important variable. 
Elastic Net models also considers this variable important, select-
ing it third behind number of dependents and number of 
children. Next most important variables are a set of asset 
variables – whether a household has high quality cooking fuel, 
toilet, number of computers, cable access, TV, refrigerator, 
number of vehicles, and electric washers.  

Following these variables, we see several satellite derived 
variables appear, both generated from the time series as well as 
contextual cross-sectional information. For the time series 
variables, the longest period below or above mean precipitation 
tend to be important variables, indicating that areas with long 
periods of drought or excess rain correlates with changes in 
income, likely in agricultural areas. Similarly, streaks of NDVI 
above or below the average level for these areas tend to be 
predictive of income. Contextual satellite information also appear 
to be strongly predictive of average incomes. Elastic Net models 
pick many of these variables – NDVI at 3 pixel scale, SFS at 31 and 
71 pixel scale, oriented fast and rotated brief (ORB) at scale 71 
pixels, and local binary pattern moments at 3 pixel scale.  

Figure 4 A-B Residuals calibration, survey only models and satellite & survey models 
These plots show average error by actual income quintile. Black bars show estimated standard errors specific to each quintile.  

Overall, while variables derived from surveys tend to be the 
strongest predictors of household income, almost all machine 
learning models improve with the addition of satellite derived 
variables, and within models outside of the top 5 or 10 most 
important variables, satellite features tend to be strongly 
predictive of household income.  

One concern with small area estimates is that our model may be 
biased, not on average, but for particular sub-populations 
whose outcomes we would like to measure with high precision. 
For instance we need to ensure we are not producing biased 
estimates of incomes for the poorest populations. Therefore, 
residuals diagnostics by subgroups is a crucial component of 
any small estimation model.  

Figure 4 A presents, for the survey only models, the average 
residuals (true household income minus predicted income) and 
standard errors by household income decile in the test sample. 
We use the predictions from the combined model, which calcu-
lates the predicted household income as the mean of the four 
machine learning models. For each income decile, we calculate 
the average (bar graph length) and the estimated standard 
error (black bar). Note that the lowest errors are seen for house-
holds in the middle of the income distribution, from log incomes 

of 6.38 to 7.22. For households within this range, errors are 
roughly symmetric around zero, and small in magnitude. This 
indicates we can assume, for households within this income 
range, our models of income are accurate and unbiased. 

As we move to the two highest and lowest income deciles, we 
see the average residuals grow. For the richest households, 
residuals are positive, indicating we under predict income for 
these households. For the poorest households, residuals are 
negative, indicating we over predict incomes for these house-
holds. In general, our models of poverty tend to understate the 
true variance of household incomes.  

However, in comparing the top panel A (survey variables only) 
with the bottom panel B (satellite and survey variables) we see 
that the residuals for the poorest and richest households are 
smaller for the satellite and survey models. In particular, residuals 
for the poorest decile decline from around -0.75 to -0.5. The 
black standard error bars show that the two poorest deciles for 
the survey only models (panel A) are biased, whereas the 
standard errors bars for the satellite and survey models (panel B) 
cross the zero threshold. We see similar improvement in the 
richest deciles when comparing the satellite and survey to the 
survey models alone, indicating satellite features help predict 
rich households as well. Taken together, the satellite features 
help recover critical characteristics of the most important 
income deciles. 
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Discussion of Poverty Maps 

To calculate poverty scores, we need to choose a poverty line, 
and calculate headcount poverty rates, or FGT0 counts (Foster, 
Greer, Thorbecke, 1984). Because of data release restrictions, we 
calculate poverty lines at the 5/10/15 and 20th percentiles of 
national income. One important caveat with these maps is that 
while they provide an excellent view on the distribution of pover-
ty within Belize, as currently designed they cannot provide an 
update to the national poverty rate. In order to do so, Belize 
would need to conduct a consumption survey that would provide 
the input to the machine learning models in substitution for the 
Labor Force Surveys used. However, using Big Data and machine 
learning paired with a consumption survey for this purpose will 
likely reduce the total costs of the consumption survey, given that 
Big Data has shown to reduce the number of households needed 
to survey for a given level of survey accuracy. 

The modeling calibration section showed the best model perfor-
mance in the test set was the combined model, which averaged 
all household predictions together. We further define the poverty 
status of each household using an algorithm where each machine 
learning model “votes” whether a household is poor or not, 
details of which are provided in the appendix. 

Map Results and Implications for Policy Design

The maps showing poverty rate using these four relative poverty 
lines (5/10/15 and 20th percentiles of national income) are 
presented in figure form in the appendix. We see from these 
figures that the poorest districts are Corozal, in the north, and 
Toledo, in the south. If we use a threshold of the 5th percentile of 

national income as our poverty line, it appears that almost all of 
the poverty is confined to these two areas. The last poverty map 
for Belize was produced by the Statistical Institute of Belize in 
2009 using information in the 2009 Census. For the 2009 map, 
four districts were classified as having high poverty rates – 
Corozal, Orange walk, Stann Creek and Toledo. Viewing our 
analysis in light of the previous map, it appears there has been 
significant reduction in poverty for the districts of Orange Walk 
and Stann Creek, which is immediately apparent when viewing 
the 5th percentile of national income relative poverty map. Our 
new poverty maps have enumeration district as their resolution, 
and the previous maps only provide district level poverty disag-
gregation, thus it’s di�cult to make a direct comparison.
  
Given this higher resolution of a poverty map – at the enumera-
tion district rather than district level – other interesting patterns 
emerge as well. Even within a poorer region such as Stann Creek 
we see there is substantial heterogeneity in the relative poverty 
rate. The city of Dangrige appears significantly less poor than the 
surrounding areas. Whether this indicates improvement from 
2009 we cannot say as the previous poverty map did not 
produce enumeration district poverty levels. The city of Punta 
Gorda in Toledo, itself a relatively poorer district, appears to be 
lower in poverty and surrounded by higher poverty EDs. Interest-
ingly the city of Corozul in Corozal still appears as poor as 
surrounding areas, a pattern that is di�erent from the previous 
districts discussed.  

Given the fact that satellite features have been shown in the 
previous section to improve the modeling of rural (poorer) 
households, it is likely that the inclusion of satellite variables 
allows for the increased accuracy of rural households. This allows 
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To calculate poverty scores, we need to choose a poverty line, 
and calculate headcount poverty rates, or FGT0 counts (Foster, 
Greer, Thorbecke, 1984). Because of data release restrictions, we 
calculate poverty lines at the 5/10/15 and 20th percentiles of 
national income. One important caveat with these maps is that 
while they provide an excellent view on the distribution of pover-
ty within Belize, as currently designed they cannot provide an 
update to the national poverty rate. In order to do so, Belize 
would need to conduct a consumption survey that would provide 
the input to the machine learning models in substitution for the 
Labor Force Surveys used. However, using Big Data and machine 
learning paired with a consumption survey for this purpose will 
likely reduce the total costs of the consumption survey, given that 
Big Data has shown to reduce the number of households needed 
to survey for a given level of survey accuracy. 

The modeling calibration section showed the best model perfor-
mance in the test set was the combined model, which averaged 
all household predictions together. We further define the poverty 
status of each household using an algorithm where each machine 
learning model “votes” whether a household is poor or not, 
details of which are provided in the appendix. 

The maps showing poverty rate using these four relative poverty 
lines (5/10/15 and 20th percentiles of national income) are 
presented in figure form in the appendix. We see from these 
figures that the poorest districts are Corozal, in the north, and 
Toledo, in the south. If we use a threshold of the 5th percentile of 

national income as our poverty line, it appears that almost all of 
the poverty is confined to these two areas. The last poverty map 
for Belize was produced by the Statistical Institute of Belize in 
2009 using information in the 2009 Census. For the 2009 map, 
four districts were classified as having high poverty rates – 
Corozal, Orange walk, Stann Creek and Toledo. Viewing our 
analysis in light of the previous map, it appears there has been 
significant reduction in poverty for the districts of Orange Walk 
and Stann Creek, which is immediately apparent when viewing 
the 5th percentile of national income relative poverty map. Our 
new poverty maps have enumeration district as their resolution, 
and the previous maps only provide district level poverty disag-
gregation, thus it’s di�cult to make a direct comparison.
  
Given this higher resolution of a poverty map – at the enumera-
tion district rather than district level – other interesting patterns 
emerge as well. Even within a poorer region such as Stann Creek 
we see there is substantial heterogeneity in the relative poverty 
rate. The city of Dangrige appears significantly less poor than the 
surrounding areas. Whether this indicates improvement from 
2009 we cannot say as the previous poverty map did not 
produce enumeration district poverty levels. The city of Punta 
Gorda in Toledo, itself a relatively poorer district, appears to be 
lower in poverty and surrounded by higher poverty EDs. Interest-
ingly the city of Corozul in Corozal still appears as poor as 
surrounding areas, a pattern that is di�erent from the previous 
districts discussed.  

Given the fact that satellite features have been shown in the 
previous section to improve the modeling of rural (poorer) 
households, it is likely that the inclusion of satellite variables 
allows for the increased accuracy of rural households. This allows 

us to see details in the poverty rates of households surrounding 
cities and not restricting to the cities themselves. 

Cost Discussion and Considerations 
For Implementation

Implications for Policy Design Conclusion

The prototypical government agency considering incorporating 
open source satellite features into their statistical agency should 
be aware of likely costs for building the satellite features 
pipeline, as shown in the table below. One important note is that 
these are almost all fixed costs. Improving poverty modeling for 
the poorest households in other ways – such as redesigning 
surveys or increasing sample sizes – add to variable costs.

Countries which are likely to benefit the most from open source 
satellite features are those with substantial rural poverty, whose 
traditional surveys are not capturing su�cient variation in rural 
incomes. To some degree satellite features and surveys are 
substitutes, thus countries who are already performing frequent 
poverty maps are unlikely to benefit as much from these e�orts 
as those who produce infrequent poverty maps. 

The substantial within-district heterogeneity in poverty rates 
discussed above suggests certain policy mechanisms may be 
more e�ective at eradicating poverty than others. First, blanket 
untargeted transfers are not likely to be cost-e�ective given the 
starkly contrasting poverty rates across EDs. It’s clear that 
poverty is a phenomenon that is not restricted to one district 
and thus means tested transfers and subsidies are likely to be 
more e�ective than blanket transfer at direct poverty reduction. 
Other fiscal policies under consideration such as educational or 
labor programs should additionally consider firstly the greater 
poverty in Corozal and Toledo, but secondly the di�ering pover-
ty within districts.  

Frequently updated poverty maps can aid in the design of fiscal 
and means-tested programs. By viewing changes in ED level 
poverty rates the government can build more cost-e�ective 
programs that accomplish the goal of poverty reduction at a 
lower cost.  

One important added benefit of producing poverty maps is that 
now the government has at its disposal predicted incomes for 
every household in the country. The government could imple-
ment a policy simulation sandbox whereby each policy under 
consideration is modeled in a general equilibrium framework, 
and new simulated household incomes are derived. The govern-
ment could in this fashion forecast the cost-benefit tradeo�s of 
policy before it is implemented, which is all the more important 
given the distributed nature of poverty in the country. Costs for 
such an enterprise would range from $250,000 to $750,000 
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USD and require a couple sta� to design and score each policy. 
The cost savings in terms of policy implementation would likely 
be many times that cost. 

What can the proto-typical department of Statistics learn from 
this example in Belize? We have shown that open-source satellite 
features have the potential to improve poverty estimation, and 
that they can be incorporated into a machine learning prediction 
framework with relative ease. We document a 9% improvement 
in average coe�cient of variation when these models incorporate 
open-source satellite features. However, these averages do not 
tell the whole story. The model substantially improves the accura-
cy of income estimates for the poorest households when we add 
these satellite variables, indicating they hold great potential for 
identifying the poorest of the poor. This ability to better di�eren-
tiate the poorest communities, at a high degree of spatial resolu-
tion, is critical to the meaningful targeting of poverty interven-
tions. 

In light of these results, what is the value of “cheap” Big Data?  
Given the typical poverty modeling approach of merging a 
Census to a Survey, this necessarily restricts models to intersec-
tions of questions asked in both questionnaires. We have seen 
that using only survey information, our models perform poorly 
for the poorest households. Big Data, in this case from satellite 
imagery, provides information not captured by surveys, suggest-
ing its value could be very high. 

R2 Time Cost 

 2-5 months

 3-6 months

6-9 months

2-6 months

3 days 

 $100,000 

 $100,000 

$100,000-$250,000 

$30,000 

$30,000 

Table 5 Cost Discussion of Open Source Satellite Features Poverty 
Map 

Workshop with 

Statistical agency  

Project Investigation 

 Project Research and  
Implementation 

 Capacity Building 

Data Warehousing  
and API Building 
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Machine Learning Poverty Modeling 
Methods

Ensemble Poverty Metric
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Appendix

The following section outlines our use of machine learning for 
small-area estimation.  

Most surveys which measure income or consumption do not 
sample all areas where policy makers would like to know 
estimates of poverty or welfare. Many low-income areas are 
largely inaccessible or sparsely populated. Even when they do 
sample all areas, there may not be su�cient observations to 
generate welfare statistics at a spatial resolution. As a result, 
most estimates of welfare at the local level are generated 
through small area estimation, techniques which typically match 
a target survey, which measures the variable of interest (poverty, 
consumption or income), and a census, which contains su�cient 
observations from which one can accurately calculate welfare. 
This approach requires a model of household-level welfare, 

, which is the income or consumption level of household   
measured in local area  . One approach is to assume a (log) 
linear relationship between household characteristics   and 
income/consumption which takes the form: 

ϵ

where      is the unexplainable error term and we have 
k linear coe�cients,       , to use to model income or consump-
tion. Note that if we build a su�ciently accurate model of 
income or consumption, and the true income process is linear, 

. If we restrict our household characteris-
tics to those that are also available in the census, and we 
have recovered a model of household income or consumption 
that remains su�ciently accurate in the survey and census, we 
can apply the parameter estimates obtained from the census 

to derive   for every household in the census. This 
provides a method to compute welfare for each household in 
the census. The resulting estimate of welfare is: 

where      is the number of households or population in cluster c,  
and              is the average welfare statistic of interest in the cluster.  

Several problems may arise. For one, the true relationship 
between welfare          and household characteristics  may 
be non-linear and di�cult to model via ordinary linear regression 
(OLS). A common refinement of this method is to use simulation 
methods to improve the asymptotic properties of      . We take a 
di�erent approach, and instead use machine learning to model 

 under the logic that machine learning will recover a better 
household-level model of welfare. In particular we aim to better 
capture the likely non-linear relationship between satellite and 
census features and income. We estimate models of the form: 

where is estimated using four separate machine learning 
models. We estimate the following four models: 1) Ridge Regres-
sion (Hoerl and Kennard, 1970), 2) Elastic Net regression (Zou 
and Hastie, 2005), 3) Random Forest (Breiman, 2001), and 4) 
Extreme Gradient Boosted Trees (Friedman, 2001). We lastly 
estimate model 5) Combination, which creates a simple average 
of the four estimated models. This last model is a simple ensem-
ble of several models that may retain the separate strengths of 
each model. 

We calculate what we define as the “ensemble” poverty metric, 
as shown in the equation below. Suppose we want to know the 
poverty status of a household   in cluster  . For each household, 
we have calculated predicted income or consumption 
from each model , from a total of   models. The poverty status 
of each household is defined as:  



The eventual geographic area to which we link these satellite 
features is the Enumeration District (ED), thus for each ED area 
we summarize the features using the mean, standard deviation, 
and the sum for each. Together this produces 432 contextual 
feature values, which summarize various contextual aspects of 
satellite imagery for each ED. 

As is displayed in Figure 5, the spatial and spectral patterns of the 
urban area visible within the imagery is well captured by contex-
tual features.  

These features are primitive versions of the features constructed 
using machine learning techniques such as Convolutional Neural 
Networks (Jean et al. 2016). Both approaches summarize images 
by comparing pixels with their neighbors. The main di�erence is 
that the Convolutional Neural Networks require survey data on 
welfare to determine which features to calculate8. In other words, 
the computer selects parameters for layers of filters, which when 
applied to the imagery construct textures that are optimized to 
distinguish between low and higher welfare areas. In order for the 
computer to select the best parameters for these layers, the 
general method is to use millions of data points when training the 
algorithms. Because of the limited training data for poverty 
surveys, a method known as “transfer learning” is used to 
hot-start the intermediate layers of the convolutional neural 
network which defines the filters (Jean et al. 2016; Babenko et al. 
2017), often using intermediate filters that have been trained 
against large corpuses of images such as ImageNet (Deng et al. 
2009). In practice this assigns filters intended for the purpose of 
recognizing features in traditional photography to satellite 
images. 

In contrast, the contextual features used in this analysis are 
constructed using pre-determined algorithms. Therefore, they are 
independent of the survey data. To be clear, both methods must 
use external information to inform the choice of filters which 
summarize the imagery. Both methods use pre-defined filters 
given the paucity of survey data, only ours are designed for 
summarizing satellite images and not photographs of dogs and 
cats. 

Mapping Income Poverty in Belize 
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 http://caret.r-forge.r-project.org/ 
Convolutional neural networks are feed-forward neural networks that have one or more convolutional layer which as a filter 
that heightens or depresses image characteristics depending on 
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Model Estimation

Contextual Features

LandTrendr 

Where is the poverty status as defined by the 
ensemble poverty metric. Each model “votes” according to 
whether it defines a given household as being poor or not. In 
using the ensemble poverty metric we can remain agnostic as to 
the best model, as some models may perform better for one 
subgroup or another. In this fashion, the ensemble poverty 
metric better captures model uncertainty than relying on one 
model alone. 

Across all four machine learning prediction methods we use 
repeated five-fold cross-validation to tune necessary parame-
ters in the model. The shrinkage parameters for models 1 and 2 
are selected via repeated five-fold cross-validation. For model 3 
we utilize 1,000 regression trees and cross-validate the parame-
ter ‘mtry’ using a grid from 1 to 40, in steps of 3. For model 4, we 
cross validate the following parameters: number of trees grown 
from 50 to 400, maximum tree depth from 1 to 5 in steps of 5, 
learning rate from 0.3 to 0.4, and variables sampled from 60% to 
80%. All models are estimated in R using the package caret7. 

In this analysis, we use scales of 3, 5, 7, which are squares of 3 
pixels by 3 pixels, 5 pixels by 5 pixels, to 7 pixels by 7 pixels for 
the majority of features. This constitutes looking at an area of 30 
meters, 50 meters, and 70 meters for the “neighborhoods” 
which will constitute the windows of analysis for our contextual 
features. For the features ORB, SFS, Fourier and LSR the scale 
was increased by a factor of 10 because these features need 
more area to properly capture the variation in the landscape. 

Each of the contextual features may have several di�erent 
outputs depending upon the statistical properties of the 
features as those features are calculated. For Pantex and Lacu-
narity, the actual values themselves are outputted. For NDVI, 
Mean, and Fourier, just the mean and variance are outputted. For 
HOG, LPBPM, and ORB, we output the Mean, Maximum, 
variance, Kurtosis, and Skewness for these measures. LSR 
outputs the line contrast, line length, and line mean. SFS maxi-
mum line length, minimum line length, mean, weight mean, 
standard deviation, and maximum ration of orthogonal angles. 
Finally, Gabor outputs mean and variance for each of the filters, 
which in this study we used 14. 

In total this produces 46 total outputs for all of the features and, 
because each feature is run at 3 scales, in sum our method 
produces a total of 144 outputs from the contextual features. 

LandTrendr (LT) is a broadly used algorithm that detects sudden 
shifts in an index, in this case NDVI, on a pixel-by-pixel basis. 
E�ectively LT fits local regressions, the uses a series of metrics to 
detect sudden shifts in slope, or intercept on a year-by-year basis. 
As such, LR is e�ective at identifying land cover change, for 
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instance conversion of forest to agriculture, or agriculture to 
urban settlement. Because LT only needs one clear observation 
per year it is e�ective for use with high resolution data like 
Sentinel or Landsat another higher resolution satellite. LT has a 
series of underlying assumptions and parameters, which we will 

not cover here for the sake of clarity. Detailed information on the 
algorithm is available (Cohen et al. 2018; Kennedy, Yang, and 
Cohen 2010). For a visual example of LandTrendr’s output see 
Figure 5 below: 

Figure 5 LandTrendr magnitude of disturbance 
In the image above we can see that LandTrendr’s algorithm can detect one-time shocks, such as paving or resurfacing roads, conversion of crop 
type (or perhaps crop loss). Areas in red indicate a strong negative shock, such as the creation of a road, or reduction in greenness. Areas in light 
green indicate mild shocks perhaps indicating typical planting, harvest cycle

Inter-American
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Time Series Statistics 

a g g _ l i n e a r _ t r e n d _ f _ a g g “ m a x ” _ _ 
chunk_len_6_attr“slope” 

a g g _ l i n e a r _ t r e n d _ f _ a g g “ m i n ” _ _ 
chunk_len_6_attr“slope” 

count_above_mean 

count_below_mean 

last_location_of_maximum 

last_location_of_minimum 

longest_strike_above_mean 

longest_strike_below_mean 

maximum 

mean 

mean_change 

median 

minimum 

number_cwt_peaks__n_12 

number_cwt_peaks__n_6 

quantile__q_0.05 

quantile__q_0.15 

Maximum observed trend during any 6 periods 

Minimum observed trend during any 6 periods 

Number of observations above the global mean 

Number of observations below the global mean 

Location of the periods maximum value 

Location of the periods minimum value 

Longest period of values observed above the 
global mean 

Longest period of values observed below the 
global mean 

Global maximum value 

Global mean value 

Average change between any two periods in 
series 

Global median value 

Global minimum value 

The highest number of peaks that occur in 12 
periods 

The highest number of peaks that occur in 6 
periods 

Value of the 5th percentile 

Value of the 15th percentile 

Sudden positive shocks (flood) 

Sudden negative shocks (drought, land use 
change) 

Persistent shifts up (increase in rainfall) 

Persistent shifts down (decrease in rainfall) 

Time since maximum observed value (declining 
productivity) 

Time since minimum observed value (increasing 
productivity) 

Duration of persistent shifts up (flooding) 

Duration of persistent shifts down (drought) 

Highest observed greenness / rainfall 

Average observed greenness / rainfall 

Instability in time series (irregular rain) 

Average observed greenness / rainfall 

Minimum observed greenness / rainfall 

Number of crop rotations, unstable rainfall 

Number of crop rotations, unstable rainfall 

Minima correcting for outliers 

Minima correcting for outliers 

quantile__q_0.85 Value of the 85th percentile Minima correcting for outliers 

quantile__q_0.95 Value of the 95th percentile Maxima correcting for outliers 

ratio_beyond_r_sigma__r_2 Ratio of values that are more than 2*std(x) away 
from the mean 

Frequency of extreme values, flooding, shocks 

skewness Ratio of values that are more than 3*std(x) away 
from the mean 

Frequency of very extreme values, flooding, 
shocks 

sum_values Sample skewness of x (calculated with the 
adjusted G1 coe�cient) 

Changes in distribution over time 

Table 2A Description of high temporal resolution time-series feature 

Name Description Interpretation 
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Variable Importance 

Figure 6 A-B Variable importance machine learning models of household income, Ridge and Elastic Net models These plots show the top 30 most import-
ant variables for predicting household income. Each variable’s importance metric is scaled by the top variable, which is given an importance metric of 100, 
and other variables scores are relative to that variable  

Med/Mn 

Min/Max 

P5/P25/P75/P95 

Sum 

Std 

LS_distr_mag_2012_2017 

LS_distr_dur_2012_2017 

Global median/mean NDVI 

Global minimum/maximum NDVI 

5th, 25th, 75th, 95th percentile value NDVI 

Sum of all NDVI values 

Standard deviation of NDVI values 

Magnitude of LandTrendr observed shock to 
NDVI 

Duration of observed LandTrendr shock to NDVI 

Average  greenness, vegetation productivity 

Max/Min  vegetation productivity 

Min(Max)imal measures of greenness robust to 
outliers such as clouds 

Persistence of vegetation and productivity 

Stability of greenness and productivity 

Sudden positive or negative shock (drought, 
land use change) 

Indicator of severity/duration of shock 

Table 6 Description of low temporal resolution time-series features

Name Description Interpretation 

A Ridge Model B ElasticNet Model
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Figure 7 A-B Variable importance machine learning models of household income, Random Forest and Extreme Gradient Boosted models These plots 
show the top 30 most important variables for predicting household income for Random Forest and XGBoost. Each variable’s importance metric is scaled 
by the top variable, which is given an importance metric of 100, and other variables scores are relative to that variable  

A Random Forest Model B Extreme Gradient Boosted Model
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S ource:  "Mapping Poverty in Belize Using S atellite Features and Machine Learning" 
Jonathan Hersh, R yan E ngstrom, Michael Mann, Alejandra Mejia, and Lucia Martin R ivero. 

Inter-American Development Bank, 2020
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XG Boost Average Monthly Income Estimates for Belize

Belize City

Orange Walk
Source:  "Mapping Poverty in Belize Using Satellite Features and Machine Learning" 

Jonathan Hersh, Ryan Engstrom, Michael Mann, Alejandra Mejia, and Lucia Martin Rivero. 
Inter-American Development Bank, 2020
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Source:  "Mapping Poverty in Belize Using Satellite Features and Machine Learning" 
Jonathan Hersh, Ryan Engstrom, Michael Mann, Alejandra Mejia, and Lucia Martin Rivero. 

Inter-American Development Bank, 2020
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Source:  "Mapping Poverty in Belize Using Satellite Features and Machine Learning" 
Jonathan Hersh, Ryan Engstrom, Michael Mann, Alejandra Mejia, and Lucia Martin Rivero. 

Inter-American Development Bank, 2020
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Source:  "Mapping Poverty in Belize Using Satellite Features and Machine Learning" 
Jonathan Hersh, Ryan Engstrom, Michael Mann, Alejandra Mejia, and Lucia Martin Rivero. 

Inter-American Development Bank, 2020
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